Switching Power Supply Type SPDC 240W Compact DIN Rail Mounting

- Universal AC, DC input range (85Vac~264Vac, 127Vdc~375Vdc)
- Built-in active PFC>0.95
- Efficiency up to 94\%
- Output protections: OVP/OLP/SCP/OTP
- Operating ambient temp $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
- Built-in DC OK relay contact
- Ultra-slim, 45mm width

Product Description

The SPDC Series Switching power supplies are specially designed to be used in all automation application where the installation is on a DIN rail and compact dimensions and high performance are a must. SPDC power supplies feature the same power of Carlo Gavazzi SPD series supplies which are double in size.
The greater compactness is achieved thanks to the limited energy loss and the
consequent high efficiency. this specific SPDC 240W compact is available with 24 Vdc output only. SPDCs can be connected in parallel with another identical unit to achieve double power.
A switch is provided on the front panel to select this configuration.
It also supports the redundant operation $1+1$ or $\mathrm{n}+1$ providing they are employed together with redundant module/s.

Ordering Key

SPDC 242401
Model
Output voltage
Output power
Single phase input

Approvals

C

Output Performance

MODEL NO.	Output Voltage (VDC)	Voltage Trim Range (VDC)	Output power (w)	Max. output current (A)	Typical efficiency	
SPDC242401	24	24	28	240	10	94%

Voltage accuracy	$\pm 3.0 \%$	Set-up Time	
Line regulation	$\pm 0.5 \%$	230 Vac input voltage	<3s
Load regulation	$\pm 1.0 \%$	Overshoot and Undershoot	<5.0\%
Temp. Coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$	Minimum load	0\%
$\begin{aligned} & \text { Ripple \& noise } \\ & 0^{\circ} \sim 70^{\circ} \mathrm{C}\left(32^{\circ} \sim 158^{\circ} \mathrm{F}\right) \end{aligned}$	$\leq 240 \mathrm{mV}$	Power boost	$\begin{aligned} & \leq 110 \% 5 \text { s } \\ & \geq 110 \% \leq 150 \% \text { 3s Max } \end{aligned}$
$0^{\circ} \sim-25^{\circ} \mathrm{C}\left(32^{\circ} \sim-13^{\circ} \mathrm{F}\right)$	$\leq 480 \mathrm{mV}$	Parallel operation	
Hold up Time	$\geq 20 \mathrm{mS}$ (230Vac input, Full load)	(Selectable by front switch)	2 identical units

Inpuł Dafa All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ unless otherwise noted

Rated input voltage	85Vac~264Vac $127 \mathrm{Vdc} \sim 375 \mathrm{Vdc}$	Power Factor (typical) 100Vac	0.99
Voltage range	85Vac~264Vac	230 Vac	0.95
AC Current (max.)		Leakage Current	
100Vac	<3.0 A	Input-output	$<0.25 \mathrm{~mA}$
230 Vac	<1.5A	Input-PG	$<3.5 \mathrm{~mA}$
Frequency range	$47 \mathrm{~Hz}-63 \mathrm{~Hz}$		
Inrush Current			
(Typical, cold start)			
100 Vac	20A		
230 Vac	40A		

Control and Protections

Over voltage $\mathbf{2 4 V}$	From 29 to 33V
Short Circuit protection	Hiccup mode
Over Load protection $100 \% \sim 120 \%$	Constant current limiting 5s $120 \% \sim 150 \%$
$>150 \%$	Constant current limiting 3s
	Hiccup mode, auto recovery

From 29 to 33 V
Hiccup mode

Constant current limiting 3s
Hiccup mode, auto recovery

Over temperature protection
(detected on heatsink, shut down,
auto-recovery)
$+105^{\circ} \mathrm{C} \pm 5^{\circ}\left(+212^{\circ} \mathrm{F} \pm 9^{\circ}\right)$

Power Factor (typical)

Operating temperature	$\begin{aligned} & -25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}, \\ & \left(-13^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}\right) \end{aligned}$	Dimensions HxDxW	Metal, Stainless steel $124 \times 119 \times 45 \mathrm{~mm}$
Derating from 60° to $70^{\circ} \mathrm{C}$			(4.88" $\times 4.7$ " $\times 1.77$ ")
(140° to $158^{\circ} \mathrm{F}$)	See derating diagram	Weight	780 g (1.72 lb)
Humidity	5\%~95\%RH No condensing	Single package	$\begin{aligned} & 850 \mathrm{~g}(1.87 \mathrm{lb}), \\ & 150 \times 57 \times 147 \mathrm{~mm} \\ & \left(5.91 " \times 2.24^{\prime \prime} \times 5.79^{\prime \prime}\right) . \\ & 24 \text { units, } 21 \mathrm{~kg}(46.3 \mathrm{lb}) \end{aligned}$
Storage Temperature	$\begin{aligned} & -40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C} \\ & \left(-40^{\circ} \mathrm{F} \sim 185^{\circ} \mathrm{F}\right) \end{aligned}$		
Protection degree	IP20	Carton	
Cooling method	Free air convection		
MTBF (MIL-HDBK-217F)	$\begin{aligned} & >300,000 \mathrm{Hrs} \\ & \left(25^{\circ} \mathrm{C}\right. \text {, Full load) } \end{aligned}$		

Approvals and EMC

insulation Voltage		EMC Emission	EN55022, EN55024,
Primary-Secondary:	$3.0 \mathrm{KVac} ; \leq 10 \mathrm{~mA}$.		FCC PART 15 Class B
Primary-PG:	$2.5 \mathrm{KVac} ; \leq 10 \mathrm{~mA}$.	Harmonic Current	EN61000-3-2, CLASS A.
Secondary-PG:	$0.5 \mathrm{KVac} \leq 20 \mathrm{~mA}$.	EMC Immunity	EN61000-4-2, 3, 4, 5, 6, 8,
Isulation Resistance	$\geq 100 \mathrm{M}$ ohms		11; heavy industry level
Safety Standards	EN60950-1		
Withstand Voltage			
Primary-Secondary:	$3.0 \mathrm{KVac} ; \leq 10 \mathrm{~mA}$.		
Primary-PG:	$2.5 \mathrm{KVac} ; \leq 10 \mathrm{~mA}$.		
Secondary-PG:	$0.5 \mathrm{KVac} \leq 20 \mathrm{~mA}$.		

Block Diagram

Derating Diagram

Installation

Ventilation and cooling	Free air convection. 25mm of free space on each side is recommended	Terminals cable	0.2mm² to $5 \mathrm{~mm}^{2}$ (AWG24 to AWG10) Stranded or solid 8mm recommended stripping
Max. torque for terminal Input terminal Output terminal	1.0 Nm 0.6 Nm		

Pin Assignement and Front Controls

PIN NO.	Designation	Description
1	$($	Ground this terminal to minimize high frequency emissions
2	N	Input terminals (neutral conductor, no polarity with DC input)
3	L	Input terminals (phase conductor, no polarity with DC input)
4	DC OK	DC ON relay contact
5	DC OK	DC ON relay contact
6,7	V+	Positive output terminal
8,9	V-	Negative output terminal
	Vout ADj.	Trimmer-potentiometer for Vout adjustment
	DC status	LED indication of power supply output status
	Parallel	Switch for single or parallel operation

Mechanical Drawing dimensions are expressed mm (Inches)

