Switching Power Supply Type SPDC 120W Compact DIN Rail Mounting

- Universal AC, DC input range (90Vac~264Vac, 127Vdc~370Vdc)
- Built-in active PFC>0.95
- Efficiency up to 91%
- Output protections: OVP/OLP/SCP/OTP
- Operating ambient temp $-25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
- Built-in DC OK relay contact
- Ultra-slim, 32mm width

Product Description

The SPDC Series Switching power supplies are specially designed to be used in all automation application where the installation is on a DIN rail and compact dimensions and high performance are a must.
SPDC power supplies have the same power of carlo gavazzi SPD supplies which are double in size.
The greater compactness is achieved thanks to the limited energy loss, and
conseguent high efficiency. This specific SPDC Series 120W Compact are available with 12VDC or 24VDC Output Voltage. SPDCs can be connected in parallel with another identical unit. A switch is provided on the front panel to select this configuration. They also support the redundant operation $1+1$ or $n+1$ providing they are employed together with redundant module/s.

Ordering Key

Model
Output voltage
Output power
Single phase input

Approvals

C

Output Performance

MODEL NO.	Output voltage	Voltage trim range (VDC)		Output power (W)	Max. output current (A)	Typical efficiency
SPDC121201	12VDC	12	14	120	10	89.5%
SPDC241201	24 VDC	24	28	120	5	91%

Output Data all specificitions sre et nominal values, full load, 25° c (77\%) unless otherwise noted

Voltage accuracy	$\pm 1.0 \%$	Set-up Time	
Line regulation	$\pm 0.5 \%$	230VAC	<250ms
Load regulation	$\pm 1.0 \%$	100VAC	$<500 \mathrm{~ms}$
Temp. Coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$	Overshoot and Undershoot	<5.0\%
Ripple \& noise		Minimum load	0\%
$0 \sim 70^{\circ} \mathrm{C}\left(32^{\circ} \sim 158^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \leq 100 \mathrm{mV}(12 \mathrm{~V}) \\ & \leq 120 \mathrm{mV}(24 \mathrm{~V}) \end{aligned}$	Power boost	$\begin{aligned} & \leq 120 \% 5 \mathrm{~s} \\ & \geq 120 \% \leq 150 \% 3 \mathrm{~s} \end{aligned}$
$0 \sim-25^{\circ} \mathrm{C}\left(32^{\circ} \sim-13^{\circ} \mathrm{F}\right)$	$\begin{aligned} & \leq 200 \mathrm{mV}(12 \mathrm{~V}) \\ & \leq 240 \mathrm{mV}(24 \mathrm{~V}) \end{aligned}$	Parallel operation (Selectable by front switch)	2 units max.
Hold up Time	$\geq 20 \mathrm{mS}$ (230Vac input, Full load)		

Input Data All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}\left(77^{\circ}\right)$ unless otherwise noted

Rated input voltage	90Vac~264Vac 127 Vdc ~370Vdc	Power Factor (typical) 100VAC	0.99
Voltage range	85Vac~264Vac	230VAC	0.95
AC Current (max.)		Leakage Current	
100VAC	<1.50A	Input-output	$<0.25 \mathrm{~mA}$
230VAC	<0.65 A	Input-PG	$<3.5 \mathrm{~mA}$
Frequency range	$47 \mathrm{~Hz}-63 \mathrm{~Hz}$		
Inrush Current (Cold start, typical)			
100VAC	<30A		
230VAC	<60A		

Control and Protections

Over voltage		Over temperature protection (detected on heatsink, shut down, auto-recovery)	$+100^{\circ} \mathrm{C}+/-5^{\circ}\left(+212^{\circ} \mathrm{F}+/-9^{\circ}\right)$
12V	15~18V		
24V	29~33V		
Short Circuit protection	current limit		
Over Load protection			
100\% ~120\%	Constant current limiting 5s		
120\% ~150\%	Constant current limiting 3s		
>150\%	Hiccup mode, auto recovery		

General Data All specifications are at nominal values, full load, $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$ unless otherwise noted

Operating temperature	$\begin{aligned} & -25^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}, \\ & \left(-13^{\circ} \mathrm{F} \sim 158^{\circ} \mathrm{F}\right) \end{aligned}$	Cooling method MTBF (MIL-HDBK-217F)	Cooling by free air convection More than $300,000 \mathrm{Hrs}$
Derating from 60° to $70^{\circ} \mathrm{C}$		Case material	Metal, stainless steel
(140° to $158^{\circ} \mathrm{F}$)	See derating diagram	Dimensions HxDxW	$124 \times 119 \times 32 \mathrm{~mm}$
Humidity	20\% 90\%RH		(4.88" $\times 4.7$ " $\times 1.26$ ")
	No condensing	Weight	550 g
Storage Temperature	$-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$		(1,21lb)
	$\left(-40^{\circ} \mathrm{F} \sim 185^{\circ} \mathrm{F}\right)$	Packing	8pcs/CTN, $12.2 \mathrm{Kg}, 0.03 \mathrm{cbm}$
Protection degree	IP20		(26.91b, 1.06cbft)

Approvals and EMC

Insulation Voltage		EMC Emission	EN55022, EN55024,
Primary-Secondary	$3.0 \mathrm{KVAC} \leq 10 \mathrm{~mA}$.		FCC PART 15 Class B
Primary-PG	$2.5 \mathrm{KVAC} \leq 10 \mathrm{~mA}$.	Harmonic Current	EN61000-3-2, CLASS A.
Secondary-PG	$0.5 \mathrm{KVAC} \leq 20 \mathrm{~mA}$.	EMC Immunity	EN61000-4-2, 3, 4, 5, 6, 8,
Insulation Resistance	$\geq 100 \mathrm{M}$ ohms		11; heavy industry level
Safety Standards	EN60950-1		
Withstand Voltage			
Primary-Secondary	$3.0 \mathrm{KVAC} \leq 10 \mathrm{~mA}$.		
Primary-PG	$2.5 \mathrm{KVAC} \leq 10 \mathrm{~mA}$.		
Secondary-PG	$0.5 \mathrm{KVAC} \leq 20 \mathrm{~mA}$.		

Block Diagram

Derating Diagram

Installation

Ventilation and cooling	Normal convection All sides $25 \mathrm{~mm}(1 ")$ free space for cooling is recommended	Terminals cable	$0.2 \mathrm{~mm}^{2}$ to $5 \mathrm{~mm}^{2}$ (AWG24 to AWG10) Stranded or solid 8 mm recommended stripping
Max. torque for terminal Input terminal Output terminal	1.0 Nm 0.6 Nm		

Pin Assignement and Front Controls

PIN NO.	Designation	Description
1	L	Input terminals (phase conductor, no polarity with DC input)
2	N	Input terminals (neutral conductor, no polarity with DC input)
3	\perp	Ground this terminal to minimize high frequency emissions
4	DC OK	DC ON relay contact
5	DC OK	DC ON relay contact
7	V+	Positive output terminal
6	V-	Negative output terminal
	Vout ADj.	Trimmer-potentiometer for Vout adjustment
	DC status	LED indication of power supply output status
	Parallel	Switch for single or parallel operation

Mechanical Drawing All measurements are in mm (Inches)

